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Vertical grid considerations
• Geophysical fluids are “shallow” … but still rich in vertical 

structure. Inadvertent vertical mixing must be avoided.
• Strong flows often occur near boundaries (top, bottom, side). 

Grid should provide good resolution there and make it easy to 
apply boundary conditions. (σ coordinate     )

• Grid points that follow vertical motion (“Lagrangian” grid) can 
prevent numerical dispersion during wave-induced vertical 
transport. (θ coordinate     )

• Sloping coordinate surfaces can make it difficult to compute the 
horizontal pressure gradient. (z, p, or η coordinate     )

• Fluids tend to form discontinuities (fronts). High resolution near 
fronts would be desirable. (θ coordinate     )



Lagrangian vertical coordinate: 
Pros and Cons 

(“Lagrangian” = isentropic in atmospheric applications)

Major Pros:
• Subgridscale horizontal 

eddy mixing has no false 
diabatic component

• Numerical dispersion errors 
associated with vertical 
transport are minimized

• Optimal finite-difference 
representation of frontal 
zones & frontogenesis

Major Cons:
• Coordinate-ground 

intersections are inevitable 
(atmosphere doesn’t fit 
snugly into  x,y,θ grid box)

• Poor vertical resolution in 
weakly stratified regions

• Elaborate transport 
operators needed to 
achieve conservation
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Major Cons:
• Coordinate-ground 

intersections are inevitable 
(atmosphere doesn’t fit 
snugly into  x,y,θ grid box)

• Poor vertical resolution in 
weakly stratified regions

Fixes:
• Reassign grid points from 

underground portion of x,y,θ
 grid box to above-ground “s” 

surfaces
• Low stratification => large 

portion of  x,y,θ grid box is 
underground => no 
shortage of grid points 
available for re-deployment 
as “s” points

=> A “hybrid” grid appears to 
have distinct advantages – 
both from a grid-economy and a 
vertical resolution perspective
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Grid degeneracy is main reason for introducing hybrid 
vertical coordinate

"Hybrid" means different things to different people:

- linear combination of 2 or more conventional 
coordinates (examples:  p+sigma, p+theta, 
p+theta+sigma)

- ALE (Arbitrary Lagrangian-Eulerian) 
coordinate

ALE maximizes size of isentropic subdomain



ALE: “Arbitrary Lagrangian- 
Eulerian” coordinate

• Original concept (Hirt et al., 1974): maintain 
Lagrangian character of coordinate but “re-grid” 
intermittently to keep grid points from fusing.

• In FIM, we apply ALE in the vertical only and re- 
grid for 2 reasons:
(1) to maintain minimum layer thickness;
(2) to nudge an entropy-related thermo- 

dynamic variable toward a prescribed 
layer-specific “target” value by importing fluid 
from above or below.

• Process (2) renders the grid quasi-isentropic



The FIM  grid generator
Design Principles:
• Choice of θ or pot. energy conservation
• Monotonicity-preserving (no new θ extrema 

during re-gridding)
• Layer too cold1 => entrain warmer1 air from 

above
• Layer too warm1 => entrain colder1 air from 

below
• Maintain finite layer thickness near surface but 

allow massless layers aloft
• Minimize diurnal vertical migration of coordinate 

layers by keeping non-isentropic layers near 
bottom of air column.

1in terms of potential temperature



ALE: “Arbitrary Lagrangian- 
Eulerian” coordinate

• Original concept (Hirt et al., 1974): maintain 
Lagrangian character of coordinate but “re-grid” 
intermittently to keep grid points from fusing.

• In FIM, we apply ALE in the vertical only and re- 
grid for 2 reasons:
(1) to maintain minimum layer thickness;
(2) to nudge an entropy-related thermo- 

dynamic variable toward a prescribed 
layer-specific “target” value by importing fluid 
from above or below.

• Process (2) renders the grid quasi-isentropic
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Blue arrows indicate some 
diabatic process
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The “re-gridding” step: find 
new interface pressure

equal areas
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• Determine how much air from the 
neighboring layer (“source layer”)  would be 
needed to restore target pot. temperature.

• The amount needed, Δpneed , may exceed 
the amount available, Δpavail , in source layer.

• The amount ultimately transferred is 
min(Δpneed ,Δpavail - Δpmin ).

• The minimum thickness Δpmin is prescribed.

The FIM grid generator 
(cont’d - 1)



• The condition  Δpneed > Δpavail typically occurs 
under the following conditions:
– receiving layer is much warmer that target
– restoration to target pot. temperature requires more 

mass from source layer than is available.

• The likelihood for this to happen is greatest at 
low latitudes immediately above the surface
=> low-latitude near-surface layers are more 
likely to end up with constant thickness than 
layers elsewhere.

The FIM grid generator 
(cont’d - 2)



• Major challenge: achieve smooth lateral 
transition between prescribed-thickness and 
isentropic segments of a coordinate layer.

• Goal: avoid sideways-looking algorithms, i.e., 
accomplish transition through clever vertical 
re-gridding alone.

• Solution (at least a step in the right direction): 
employ a “cushion” function. Details of the 
algorithm are as follows ….

The FIM grid generator 
(cont’d - 3)



• The cushion function, which sets the final 
thickness of the source layer,

– leaves large positive Δp values unchanged: 
cush(Δp)=Δp (Δpneed << Δpavail )

– returns a (small) constant value if Δp is large 
negative: cush(Δp)=const.    (Δpneed >> Δpavail )

– links the two cases above by a smoothly 
varying function for intermediate values of Δp.

The FIM grid generator 
(cont’d - 4)



The “cushion” 
function

Δp

cush(Δp)

minimum 
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thickness





Continuity equation in generalized 
(“s”) coordinates
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Closing remarks
• After some startup problems, the ALE- 

based grid generator meets design criteria 
and is working well.

• Vertical advection terms in FIM can be 
evaluated in several ways. We presently 
use the conservative, monotonicity- 
preserving, unconditionally stable piece- 
wise linear method (PLM).

• In light of FIM’s future use as an AGCM, 
all transport & mixing algorithms are 
conservative (a step up from RUC).
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